Skip to main content

Spatial & Rotational Coordinates

Configure the coordinate systems and positioning parameters that define how the robot operates within the workspace.

Coordinate System Overview

World Coordinate System

The global reference frame for all positioning:

  • Origin: Fixed reference point (0, 0, 0)
  • X-Axis: Typically aligned with primary workspace direction
  • Y-Axis: Perpendicular to X-axis, defines workspace width
  • Z-Axis: Vertical axis, defines height/depth

Robot Base Coordinate System

Local coordinate system relative to robot mounting:

  • Base Origin: Robot mounting point
  • Orientation: Aligned with robot manufacturer specifications
  • Offset: Translation from world coordinates to robot base

Spatial Coordinates

Position Definition

Set the robot's spatial position using Cartesian coordinates:

X Position

  • Linear position along the X-axis
  • Units: millimeters (mm) or inches (in)
  • Range: Depends on robot reach and workspace limits
  • Precision: Typically 0.001 mm or better

Y Position

  • Linear position along the Y-axis
  • Perpendicular to X-axis movement
  • Constraints: Robot reachability and workspace boundaries
  • Coordinate with cell layout and fixtures

Z Position

  • Vertical position (height)
  • Critical for clearance and safety
  • Consider tool length and workpiece height
  • Account for collision avoidance requirements

Position Limits

Define allowable position ranges:

  • Minimum Values: Lower bounds for each axis
  • Maximum Values: Upper bounds for each axis
  • Safety Margins: Additional buffers for safe operation
  • Soft Limits: Warning zones before hard limits

Rotational Coordinates

Orientation Definition

Robot tool orientation using rotational parameters:

Roll (RX)

  • Rotation about the X-axis
  • Controls tool roll orientation
  • Range: Typically ±180° or ±360°
  • Critical for fiber orientation control

Pitch (RY)

  • Rotation about the Y-axis
  • Controls tool pitch angle
  • Affects approach angles and surface contact
  • Important for complex geometries

Yaw (RZ)

  • Rotation about the Z-axis
  • Controls tool heading direction
  • Determines layup direction
  • Coordinates with part geometry

Rotation Conventions

Standard rotation order and representation:

Euler Angles

  • Roll-Pitch-Yaw (RX-RY-RZ) sequence
  • Intuitive for most applications
  • Standard in aerospace and manufacturing

Quaternions

  • Four-parameter representation (w, x, y, z)
  • Avoids gimbal lock issues
  • More complex but mathematically robust

Rotation Matrices

  • 3x3 matrix representation
  • Direct mathematical transformation
  • Used for complex calculations

Coordinate Transformations

Base to World Transform

Convert between robot base and world coordinates:

  • Translation Vector: (Tx, Ty, Tz) offset
  • Rotation Matrix: 3x3 orientation transformation
  • Homogeneous Transform: 4x4 combined matrix

Tool to Base Transform

Transform from tool center point to robot base:

  • Forward Kinematics: Calculate tool position from joint angles
  • Inverse Kinematics: Calculate joint angles from tool position
  • Jacobian Matrix: Velocity and force transformations

Configuration Parameters

Position Units

Set consistent units throughout the system:

  • Linear Units: mm, cm, inches, feet
  • Angular Units: degrees, radians
  • Consistency: Ensure all components use same units
  • Conversion: Handle unit conversions automatically

Reference Points

Define key reference positions:

  • Home Position: Standard starting position
  • Tool Change Position: Location for tool changes
  • Safety Position: Emergency stop position
  • Calibration Points: Known reference positions

Coordinate Display

Configure how coordinates are displayed:

  • Decimal Places: Precision shown to operator
  • Format: Scientific, engineering, or standard notation
  • Color Coding: Visual indication of coordinate systems
  • Live Updates: Real-time position display

Setup Procedures

Initial Calibration

Establish accurate coordinate relationships:

  1. Robot Calibration: Verify robot internal calibration
  2. Base Position: Measure robot base location precisely
  3. World Reference: Establish world coordinate origin
  4. Verification: Test coordinate transformations

Workspace Mapping

Map the operational workspace:

  1. Reachability Analysis: Determine accessible positions
  2. Collision Boundaries: Identify restricted areas
  3. Safety Zones: Define protected regions
  4. Work Envelope: Map practical working area

Validation Testing

Verify coordinate system accuracy:

  1. Point-to-Point: Test movement to known positions
  2. Coordinate Comparison: Compare commanded vs. actual positions
  3. Repeatability: Test return to same coordinates
  4. Accuracy: Measure position accuracy with external references

Troubleshooting

Coordinate Misalignment

  • Verify robot calibration status
  • Check base mounting and positioning
  • Validate coordinate transformation parameters
  • Test with known reference points

Position Errors

  • Check joint encoder calibration
  • Verify mechanical backlash compensation
  • Test robot repeatability
  • Examine environmental factors (temperature, vibration)

Orientation Issues

  • Validate rotation convention settings
  • Check for gimbal lock conditions
  • Verify tool orientation calibration
  • Test angular position accuracy

Best Practices

  • Consistent Units: Use same units throughout system
  • Regular Calibration: Maintain coordinate accuracy
  • Documentation: Record all coordinate system definitions
  • Validation: Regularly verify coordinate accuracy
  • Safety: Always maintain safe position limits

Next Steps

After configuring positioning coordinates:

  1. Set up Robot Limits
  2. Configure Workspace Monitoring
  3. Set up External Axes